The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded
نویسندگان
چکیده
The coefficient of determination R2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments.
منابع مشابه
The coefficient of determination R and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9. figshare.c.3870388. & 2017 The Author(s) Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The coefficient of determination R and intra-c...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملپیشبینی تعداد موارد بروسلوز براساس پارامترهای اقلیمی با استفاده از روشهای داده کاوی شبکههای عصبی مصنوعی پرسپترون چند لایه، تابع پایه شعاعی و نزدیکترین همسایگی
Background and Objectives: Identification of statistical models has a great impact on early and accurate detection of outbreaks of infectious diseases and timely warning in health surveillance. This study evaluated and compared the performance of the three data mining techniques in time series prediction of brucellosis. Methods: In this time series, the data of the human brucellosis cases a...
متن کاملDetermination of the linear and non-linear relationships between soil erodibility factor and effective parameters on it in a mountainous watershed with severe soil erosion
Soil erodibility factor is a criterion of soil particle resistance to detachment, transport, and effects of erosivity factors (rain drop, runoff, and wind) during the soil loss processes. In this study, non-linear support vector machines (SVMs) method was used for investigating the effects of some topography, soil physical and mechanical properties on soil erodibility in a part of Northern Karo...
متن کاملA Correlation for Estimating LCPC Abrasivity Coefficient using Rock Properties
Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment require sophisticated laboratory equipment, empirical models can be used to predict rock a...
متن کامل